Skip to content

Table

A two-dimensional collection of data. It can either be seen as a list of rows or as a list of columns.

To create a Table call the constructor or use one of the following static methods:

Parameters:

Name Type Description Default
data Map<String, List<Any?>> The data of the table. If null, an empty table is created. -

Examples:

pipeline example {
    out Table({"a": [1, 2, 3], "b": [4, 5, 6]});
}
Stub code in Table.sdsstub

  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
@Category(DataScienceCategory.BasicElement)
class Table(
    data: Map<String, List<Any?>>
) {
    /**
     * The number of columns.
     *
     * **Note:** This operation must compute the schema of the table, which can be expensive.
     */
    @PythonName("column_count") attr columnCount: Int
    /**
     * The names of the columns in the table.
     *
     * **Note:** This operation must compute the schema of the table, which can be expensive.
     */
    @PythonName("column_names") attr columnNames: List<String>
    /**
     * The number of rows.
     *
     * **Note:** This operation must fully load the data into memory, which can be expensive.
     */
    @PythonName("row_count") attr rowCount: Int
    /**
     * The plotter for the table.
     *
     * Call methods of the plotter to create various plots for the table.
     */
    attr plot: TablePlotter
    /**
     * The schema of the table, which is a mapping from column names to their types.
     *
     * **Note:** This operation must compute the schema of the table, which can be expensive.
     */
    attr schema: Schema

    /**
     * Create a table from columns.
     *
     * @param columns The columns.
     *
     * @result table The created table.
     *
     * @example
     * pipeline example {
     *     val a = Column("a", [1, 2, 3]);
     *     val b = Column("b", [4, 5, 6]);
     *     out Table.fromColumns([a, b]);
     * }
     */
    @Pure
    @PythonName("from_columns")
    @Category(DataScienceCategory.UtilitiesQConversion)
    static fun fromColumns(
        columns: union<Column, List<Column>>
    ) -> table: Table

    /**
     * Create a table from a CSV file.
     *
     * @param path The path to the CSV file. If the file extension is omitted, it is assumed to be ".csv".
     * @param separator The separator between the values in the CSV file.
     *
     * @result table The created table.
     *
     * @example
     * pipeline example {
     *     out Table.fromCsvFile("./src/resources/fromCsvFile.csv");
     * }
     */
    @Impure([ImpurityReason.FileReadFromParameterizedPath("path")])
    @PythonName("from_csv_file")
    @Category(DataScienceCategory.DataImport)
    static fun fromCsvFile(
        path: String,
        separator: String = ","
    ) -> table: Table

    /**
     * Create a table from a map that maps column names to column values.
     *
     * @param data The data.
     *
     * @result table The generated table.
     *
     * @example
     * pipeline example {
     *     val data = {"a": [1, 2, 3], "b": [4, 5, 6]};
     *     out Table.fromMap(data);
     * }
     */
    @Pure
    @PythonName("from_dict")
    @Category(DataScienceCategory.DataImport)
    static fun fromMap(
        data: Map<String, List<Any>>
    ) -> table: Table

    /**
     * Create a table from a JSON file.
     *
     * @param path The path to the JSON file. If the file extension is omitted, it is assumed to be ".json".
     *
     * @result table The created table.
     *
     * @example
     * pipeline example {
     *     out Table.fromJsonFile("./src/resources/fromJsonFile.json");
     * }
     */
    @Impure([ImpurityReason.FileReadFromParameterizedPath("path")])
    @PythonName("from_json_file")
    @Category(DataScienceCategory.DataImport)
    static fun fromJsonFile(
        path: String
    ) -> table: Table

    /**
     * Create a table from a Parquet file.
     *
     * @param path The path to the Parquet file. If the file extension is omitted, it is assumed to be ".parquet".
     *
     * @result table The created table.
     *
     * @example
     * pipeline example {
     *     out Table.fromParquetFile("./src/resources/fromParquetFile.parquet");
     * }
     */
    @Impure([ImpurityReason.FileReadFromParameterizedPath("path")])
    @PythonName("from_parquet_file")
    @Category(DataScienceCategory.DataImport)
    static fun fromParquetFile(
        path: String
    ) -> table: Table

    /**
     * Add columns to the table and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param columns The columns to add.
     *
     * @result newTable The table with the additional columns.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3]});
     *     val newColumn = Column("b", [4, 5, 6]);
     *     out table.addColumns(newColumn);
     * }
     */
    @Pure
    @PythonName("add_columns")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun addColumns(
        columns: union<Column, List<Column>, Table>
    ) -> newTable: Table

    /**
     * Add a computed column to the table and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param name The name of the new column.
     * @param computer The function that computes the values of the new column.
     *
     * @result newTable The table with the computed column.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.addComputedColumn("c", (row) -> row["a"] + row["b"]);
     * }
     */
    @Pure
    @PythonName("add_computed_column")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun addComputedColumn(
        name: String,
        computer: (row: Row) -> cell: Cell
    ) -> newTable: Table

    /**
     * Add an index column to the table and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param name The name of the new column.
     * @param firstIndex The index to assign to the first row. Must be greater or equal to 0.
     *
     * @result newTable The table with the index column.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.addIndexColumn("id");
     *     out table.addIndexColumn("id", firstIndex = 10);
     * }
     */
    @Pure
    @PythonName("add_index_column")
    fun addIndexColumn(
        name: String,
        @PythonName("first_index") firstIndex: Int = 0
    ) -> newTable: Table

    /**
     * Get a column from the table.
     *
     * @param name The name of the column.
     *
     * @result column The column.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.getColumn("a");
     * }
     */
    @Pure
    @PythonName("get_column")
    @Category(DataScienceCategory.UtilitiesQTable)
    fun getColumn(
        name: String
    ) -> column: Column<Any>

    /**
     * Get the type of a column.
     *
     * @param name The name of the column.
     *
     * @result type The type of the column.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.getColumnType("a");
     * }
     */
    @Pure
    @PythonName("get_column_type")
    @Category(DataScienceCategory.UtilitiesQTable)
    fun getColumnType(
        name: String
    ) -> type: ColumnType

    /**
     * Check if the table has a column with a specific name.
     *
     * @param name The name of the column.
     *
     * @result hasColumn Whether the table has a column with the specified name.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.hasColumn("a");
     *     out table.hasColumn("c");
     * }
     */
    @Pure
    @PythonName("has_column")
    @Category(DataScienceCategory.UtilitiesQTable)
    fun hasColumn(
        name: String
    ) -> hasColumn: Boolean

    /**
     * Remove the specified columns from the table and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param selector The columns to remove.
     * @param ignoreUnknownNames If set to true, columns that are not present in the table will be ignored.
     * If set to false, an error will be raised if any of the specified columns do not exist.
     *
     * @result newTable The table with the columns removed.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.removeColumns("a");
     *     out table.removeColumns(["c"], ignoreUnknownNames = true);
     * }
     */
    @Pure
    @PythonName("remove_columns")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun removeColumns(
        selector: union<List<String>, String>,
        @PythonName("ignore_unknown_names") ignoreUnknownNames: Boolean = false
    ) -> newTable: Table

    /**
     * Remove columns with too many missing values and return the result as a new table.
     *
     * How many missing values are allowed is determined by the `missing_value_ratio_threshold` parameter. A column is
     * removed if its missing value ratio is greater than the threshold. By default, a column is removed if it contains
     * any missing values.
     *
     * **Notes:**
     *
     * - The original table is not modified.
     * - This operation must fully load the data into memory, which can be expensive.
     *
     * @param missingValueRatioThreshold The maximum missing value ratio a column can have to be kept (inclusive). Must be between 0 and 1.
     *
     * @result newTable The table without columns that contain too many missing values.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, null]});
     *     out table.removeColumnsWithMissingValues();
     * }
     */
    @Pure
    @PythonName("remove_columns_with_missing_values")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun removeColumnsWithMissingValues() -> newTable: Table

    /**
     * Remove non-numeric columns and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @result newTable The table without non-numeric columns.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": ["4", "5", "6"]});
     *     out table.removeNonNumericColumns();
     * }
     */
    @Pure
    @PythonName("remove_non_numeric_columns")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun removeNonNumericColumns() -> newTable: Table

    /**
     * Rename a column and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param oldName The name of the column to rename.
     * @param newName The new name of the column.
     *
     * @result newTable The table with the column renamed.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.renameColumn("a", "c");
     * }
     */
    @Pure
    @PythonName("rename_column")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun renameColumn(
        @PythonName("old_name") oldName: String,
        @PythonName("new_name") newName: String
    ) -> newTable: Table

    /**
     * Replace a column with zero or more columns and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param oldName The name of the column to replace.
     * @param newColumns The new columns.
     *
     * @result newTable The table with the column replaced.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     val column1 = Column("c", [7, 8, 9]);
     *     val column2 = Column("d", [10, 11, 12]);
     *     out table.replaceColumn("a", []);
     *     out table.replaceColumn("a", column1);
     *     out table.replaceColumn("a", [column1, column2]);
     * }
     */
    @Pure
    @PythonName("replace_column")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun replaceColumn(
        @PythonName("old_name") oldName: String,
        @PythonName("new_columns") newColumns: union<Column<Any>, List<Column<Any>>, Table>
    ) -> newTable: Table

    /**
     * Select a subset of the columns and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param selector The columns to keep.
     *
     * @result newTable The table with only a subset of the columns.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.selectColumns("a");
     * }
     */
    @Pure
    @PythonName("select_columns")
    fun selectColumns(
        selector: union<List<String>, String>
    ) -> newTable: Table

    /**
     * Transform columns with a custom function and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param selector The names of the columns to transform.
     * @param transformer The function that computes the new values. It may take either a single cell or a cell and the entire row as
     * arguments (see examples).
     *
     * @result newTable The table with the transformed column.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.transformColumns("a", (cell, row) -> cell + 1);
     *     out table.transformColumns(["a", "b"], (cell, row) -> cell + 1);
     *     out table.transformColumns("a", (cell, row) -> cell + row["b"]);
     * }
     */
    @Pure
    @PythonName("transform_columns")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun transformColumns(
        selector: union<List<String>, String>,
        transformer: (cell: Cell, row: Row) -> result: Cell
    ) -> newTable: Table

    /**
     * Count how many rows in the table satisfy the predicate.
     *
     * The predicate can return one of three results:
     *
     * * true, if the row satisfies the predicate.
     * * false, if the row does not satisfy the predicate.
     * * null, if the truthiness of the predicate is unknown, e.g. due to missing values.
     *
     * By default, cases where the truthiness of the predicate is unknown are ignored and this method returns how
     * often the predicate returns true.
     *
     * You can instead enable Kleene logic by setting `ignoreUnknown = false`. In this case, this method returns null if
     * the predicate returns null at least once. Otherwise, it still returns how often the predicate returns true.
     *
     * @param predicate The predicate to apply to each row.
     * @param ignoreUnknown Whether to ignore cases where the truthiness of the predicate is unknown.
     *
     * @result count The number of rows in the table that satisfy the predicate.
     *
     * @example
     * pipeline example {
     *     val table = Table({"col1": [1, 2, 3], "col2": [1, 3, null]});
     *     out table.countRowsIf((row) -> row["col1"] < row["col2"]);
     *     out table.countRowsIf((row) -> row["col1"] < row["col2"], ignoreUnknown = false);
     * }
     */
    @Pure
    @PythonName("count_rows_if")
    fun countRowsIf(
        predicate: (row: Row) -> satisfiesPredicate: Cell<Boolean?>,
        @PythonName("ignore_unknown") ignoreUnknown: Boolean = true
    ) -> count: Int?

    /**
     * Keep only rows that satisfy a condition and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param predicate The function that determines which rows to keep.
     *
     * @result newTable The table containing only the specified rows.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.filterRows((row) -> row["a"] == 2);
     * }
     */
    @Pure
    @PythonName("filter_rows")
    fun filterRows(
        predicate: (row: Row) -> satisfiedPredicate: Cell<Boolean?>
    ) -> newTable: Table

    /**
     * Keep only rows that satisfy a condition on a specific column and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param name The name of the column.
     * @param predicate The function that determines which rows to keep.
     *
     * @result newTable The table containing only the specified rows.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.filterRowsByColumn("a", (cell) -> cell == 2);
     * }
     */
    @Pure
    @PythonName("filter_rows_by_column")
    fun filterRowsByColumn(
        name: String,
        predicate: (cell: Cell) -> satisfiesPredicate: Cell<Boolean?>
    ) -> newTable: Table

    /**
     * Remove duplicate rows and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @result newTable The table without duplicate rows.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 2], "b": [4, 5, 5]});
     *     out table.removeDuplicateRows();
     * }
     */
    @Pure
    @PythonName("remove_duplicate_rows")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun removeDuplicateRows() -> newTable: Table

    /**
     * Remove rows that satisfy a condition and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param predicate The function that determines which rows to remove.
     *
     * @result newTable The table without the specified rows.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.removeRows((row) -> row["a"] == 2);
     * }
     */
    @Pure
    @PythonName("remove_rows")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun removeRows(
        predicate: (row: Row) -> satisfiesPredicate: Cell<Boolean?>
    ) -> newTable: Table

    /**
     * Remove rows that satisfy a condition on a specific column and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param name The name of the column.
     * @param predicate The function that determines which rows to remove.
     *
     * @result newTable The table without the specified rows.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.removeRowsByColumn("a", (cell) -> cell == 2);
     * }
     */
    @Pure
    @PythonName("remove_rows_by_column")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun removeRowsByColumn(
        name: String,
        predicate: (cell: Cell<Any>) -> satisfiesPredicate: Cell<Boolean?>
    ) -> newTable: Table

    /**
     * Remove rows that contain missing values in the specified columns and return the result as a new table.
     *
     * The resulting table no longer has missing values in the specified columns. Be aware that this method can discard
     * a lot of data. Consider first removing columns with many missing values, or using one of the imputation methods
     * (see "Related" section).
     *
     * **Note:** The original table is not modified.
     *
     * @param selector The columns to check. If null, all columns are checked.
     *
     * @result newTable The table without rows that contain missing values in the specified columns.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, null, 3], "b": [4, 5, null]});
     *     out table.removeRowsWithMissingValues();
     *     out table.removeRowsWithMissingValues(selector = ["b"]);
     * }
     */
    @Pure
    @PythonName("remove_rows_with_missing_values")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun removeRowsWithMissingValues(
        selector: union<List<String>, String, Nothing?> = null
    ) -> newTable: Table

    /**
     * Remove rows that contain outliers in the specified columns and return the result as a new table.
     *
     * Whether a value is an outlier in a column is determined by its z-score. The z-score the distance of the value
     * from the mean of the column divided by the standard deviation of the column. If the z-score is greater than the
     * given threshold, the value is considered an outlier. Missing values are ignored during the calculation of the
     * z-score.
     *
     * The z-score is only defined for numeric columns. Non-numeric columns are ignored, even if they are specified in
     * `column_names`.
     *
     * **Notes:**
     *
     * - The original table is not modified.
     * - This operation must fully load the data into memory, which can be expensive.
     *
     * @param selector The columns to check. If null, all columns are checked.
     * @param zScoreThreshold The z-score threshold for detecting outliers. Must be greater than or equal to 0.
     *
     * @result newTable The table without rows that contain outliers in the specified columns.
     *
     * @example
     * pipeline example {
     *     val table = Table(
     *         {
     *             "a": [1, 2, 3, 4, 5, 6, 1000, null],
     *             "b": [1, 2, 3, 4, 5, 6,    7,    8],
     *         }
     *     );
     *     out table.removeRowsWithOutliers(zScoreThreshold = 2);
     * }
     */
    @Pure
    @PythonName("remove_rows_with_outliers")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun removeRowsWithOutliers(
        selector: union<List<String>, String, Nothing?> = null,
        @PythonName("z_score_threshold") zScoreThreshold: Float = 3
    ) -> newTable: Table

    /**
     * Shuffle the rows and return the result as a new table.
     *
     * **Notes:**
     *
     * - The original table is not modified.
     * - This operation must fully load the data into memory, which can be expensive.
     *
     * @param randomSeed The seed for the pseudorandom number generator.
     *
     * @result newTable The table with the rows shuffled.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.shuffleRows();
     * }
     */
    @Pure
    @PythonName("shuffle_rows")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun shuffleRows(
        @PythonName("random_seed") randomSeed: Int = 0
    ) -> newTable: Table

    /**
     * Slice the rows and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param start The start index of the slice. Nonnegative indices are counted from the beginning (starting at 0), negative
     * indices from the end (starting at -1).
     * @param length The length of the slice. If null, the slice contains all rows starting from `start`. Must greater than or
     * equal to 0.
     *
     * @result newTable The table with the slice of rows.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.sliceRows(start = 1);
     *     out table.sliceRows(start = 1, length = 1);
     * }
     */
    @Pure
    @PythonName("slice_rows")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun sliceRows(
        start: Int = 0,
        length: Int? = null
    ) -> newTable: Table

    /**
     * Sort the rows by a custom function and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param keySelector The function that selects the key to sort by.
     * @param descending Whether to sort in descending order.
     *
     * @result newTable The table with the rows sorted.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [2, 1, 3], "b": [1, 1, 2]});
     *     out table.sortRows((row) -> row["a"] - row["b"]);
     * }
     */
    @Pure
    @PythonName("sort_rows")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun sortRows(
        @PythonName("key_selector") keySelector: (row: Row) -> key: Cell,
        descending: Boolean = false
    ) -> newTable: Table

    /**
     * Sort the rows by a specific column and return the result as a new table.
     *
     * **Note:** The original table is not modified.
     *
     * @param name The name of the column to sort by.
     * @param descending Whether to sort in descending order.
     *
     * @result newTable The table with the rows sorted by the specified column.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [2, 1, 3], "b": [1, 1, 2]});
     *     out table.sortRowsByColumn("a");
     * }
     */
    @Pure
    @PythonName("sort_rows_by_column")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun sortRowsByColumn(
        name: String,
        descending: Boolean = false
    ) -> newTable: Table

    /**
     * Create two tables by splitting the rows of the current table.
     *
     * The first table contains a percentage of the rows specified by `percentage_in_first`, and the second table
     * contains the remaining rows. By default, the rows are shuffled before splitting. You can disable this by setting
     * `shuffle` to false.
     *
     * **Notes:**
     *
     * - The original table is not modified.
     * - This operation must fully load the data into memory, which can be expensive.
     *
     * @param percentageInFirst The percentage of rows to include in the first table. Must be between 0 and 1.
     * @param shuffle Whether to shuffle the rows before splitting.
     * @param randomSeed The seed for the pseudorandom number generator used for shuffling.
     *
     * @result firstTable The first table.
     * @result secondTable The second table.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3, 4, 5], "b": [6, 7, 8, 9, 10]});
     *     out table.splitRows(0.6);
     * }
     */
    @Pure
    @PythonName("split_rows")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun splitRows(
        @PythonName("percentage_in_first") percentageInFirst: Float,
        shuffle: Boolean = true,
        @PythonName("random_seed") randomSeed: Int = 0
    ) -> (firstTable: Table, secondTable: Table)

    /**
     * Add the columns of other tables and return the result as a new table.
     *
     * **Note:** The original tables are not modified.
     *
     * @param others The tables to add as columns.
     *
     * @result newTable The table with the columns added.
     *
     * @example
     * pipeline example {
     *     val table1 = Table({"a": [1, 2, 3]});
     *     val table2 = Table({"b": [4, 5, 6]});
     *     out table1.addTablesAsColumns(table2);
     * }
     */
    @Pure
    @PythonName("add_tables_as_columns")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun addTablesAsColumns(
        others: union<List<Table>, Table>
    ) -> newTable: Table

    /**
     * Add the rows of other tables and return the result as a new table.
     *
     * **Note:** The original tables are not modified.
     *
     * @param others The tables to add as rows.
     *
     * @result newTable The table with the rows added.
     *
     * @example
     * pipeline example {
     *     val table1 = Table({"a": [1, 2, 3]});
     *     val table2 = Table({"a": [4, 5, 6]});
     *     out table1.addTablesAsRows(table2);
     * }
     */
    @Pure
    @PythonName("add_tables_as_rows")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun addTablesAsRows(
        others: union<List<Table>, Table>
    ) -> newTable: Table

    /**
     * Inverse-transform the table by a **fitted, invertible** transformer and return the result as a new table.
     *
     * **Notes:**
     *
     * - The original table is not modified.
     * - Depending on the transformer, this operation might fully load the data into memory, which can be expensive.
     *
     * @param fittedTransformer The fitted, invertible transformer to apply.
     *
     * @result newTable The inverse-transformed table.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3]});
     *     val transformer, val transformedTable = RangeScaler(min = 0, max = 1).fitAndTransform(table);
     *     out transformedTable.inverseTransformTable(transformer);
     * }
     */
    @Pure
    @PythonName("inverse_transform_table")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun inverseTransformTable(
        @PythonName("fitted_transformer") fittedTransformer: InvertibleTableTransformer
    ) -> newTable: Table

    /**
     * Join the current table (left table) with another table (right table) and return the result as a new table.
     *
     * Rows are matched if the values in the specified columns are equal. The parameter `left_names` controls which
     * columns are used for the left table, and `right_names` does the same for the right table.
     *
     * There are various types of joins, specified by the `mode` parameter:
     *
     * - `"inner"`:
     *     Keep only rows that have matching values in both tables.
     * - `"left"`:
     *     Keep all rows from the left table and the matching rows from the right table. Cells with no match are
     *     marked as missing values.
     * - `"right"`:
     *     Keep all rows from the right table and the matching rows from the left table. Cells with no match are
     *     marked as missing values.
     * - `"full"`:
     *     Keep all rows from both tables. Cells with no match are marked as missing values.
     *
     * **Note:** The original tables are not modified.
     *
     * @param rightTable The table to join with the left table.
     * @param leftNames Names of columns to join on in the left table.
     * @param rightNames Names of columns to join on in the right table.
     * @param mode Specify which type of join you want to use.
     *
     * @result newTable The table with the joined table.
     *
     * @example
     * pipeline example {
     *     val table1 = Table({"a": [1, 2], "b": [true, false]});
     *     val table2 = Table({"c": [1, 3], "d": ["a", "b"]});
     *     out table1.join(table2, "a", "c", mode="inner");
     *     out table1.join(table2, "a", "c", mode="left");
     *     out table1.join(table2, "a", "c", mode="right");
     *     out table1.join(table2, "a", "c", mode="full");
     * }
     */
    @Pure
    @Category(DataScienceCategory.DataProcessingQTable)
    fun join(
        @PythonName("right_table") rightTable: Table,
        @PythonName("left_names") leftNames: union<List<String>, String>,
        @PythonName("right_names") rightNames: union<List<String>, String>,
        mode: literal<"inner", "left", "right", "full"> = "inner"
    ) -> newTable: Table

    /**
     * Transform the table with a **fitted** transformer and return the result as a new table.
     *
     * **Notes:**
     *
     * - The original table is not modified.
     * - Depending on the transformer, this operation might fully load the data into memory, which can be expensive.
     *
     * @param fittedTransformer The fitted transformer to apply.
     *
     * @result newTable The transformed table.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3]});
     *     val transformer = RangeScaler(min = 0, max = 1).fit(table);
     *     out table.transformTable(transformer);
     * }
     */
    @Pure
    @PythonName("transform_table")
    @Category(DataScienceCategory.DataProcessingQTable)
    fun transformTable(
        @PythonName("fitted_transformer") fittedTransformer: TableTransformer
    ) -> newTable: Table

    /**
     * Return a table with important statistics about this table.
     *
     * !!! warning "API Stability"
     *
     *     Do not rely on the exact output of this method. In future versions, we may change the displayed statistics
     *     without prior notice.
     *
     * @result statistics The table with statistics.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 3]});
     *     out table.summarizeStatistics();
     * }
     */
    @Pure
    @PythonName("summarize_statistics")
    @Category(DataScienceCategory.DataExplorationQMetric)
    fun summarizeStatistics() -> statistics: Table

    /**
     * Return the data of the table as a list of columns.
     *
     * @result columns The columns of the table.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.toColumns();
     * }
     */
    @Pure
    @PythonName("to_columns")
    @Category(DataScienceCategory.UtilitiesQConversion)
    fun toColumns() -> columns: List<Column>

    /**
     * Write the table to a CSV file.
     *
     * If the file and/or the parent directories do not exist, they will be created. If the file exists already, it
     * will be overwritten.
     *
     * @param path The path to the CSV file. If the file extension is omitted, it is assumed to be ".csv".
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     table.toCsvFile("./src/resources/toCsvFile.csv");
     * }
     */
    @Impure([ImpurityReason.FileWriteToParameterizedPath("path")])
    @PythonName("to_csv_file")
    @Category(DataScienceCategory.DataExport)
    fun toCsvFile(
        path: String
    )

    /**
     * Return a map from column names to column values.
     *
     * **Note:** This operation must fully load the data into memory, which can be expensive.
     *
     * @result map The map representation of the table.
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     out table.toMap();
     * }
     */
    @Pure
    @PythonName("to_dict")
    @Category(DataScienceCategory.UtilitiesQConversion)
    fun toMap() -> map: Map<String, List<Any>>

    /**
     * Write the table to a JSON file.
     *
     * If the file and/or the parent directories do not exist, they will be created. If the file exists already, it
     * will be overwritten.
     *
     * **Note:** This operation must fully load the data into memory, which can be expensive.
     *
     * @param path The path to the JSON file. If the file extension is omitted, it is assumed to be ".json".
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     table.toJsonFile("./src/resources/toJsonFile.json");
     * }
     */
    @Impure([ImpurityReason.FileWriteToParameterizedPath("path")])
    @PythonName("to_json_file")
    @Category(DataScienceCategory.DataExport)
    fun toJsonFile(
        path: String
    )

    /**
     * Write the table to a Parquet file.
     *
     * If the file and/or the parent directories do not exist, they will be created. If the file exists already, it
     * will be overwritten.
     *
     * @param path The path to the Parquet file. If the file extension is omitted, it is assumed to be ".parquet".
     *
     * @example
     * pipeline example {
     *     val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
     *     table.toParquetFile("./src/resources/toParquetFile.parquet");
     * }
     */
    @Impure([ImpurityReason.FileWriteToParameterizedPath("path")])
    @PythonName("to_parquet_file")
    @Category(DataScienceCategory.DataExport)
    fun toParquetFile(
        path: String
    )

    /**
     * Return a new `TabularDataset` with columns marked as a target, feature, or extra.
     *
     * - The target column is the column that a model should predict.
     * - Feature columns are columns that a model should use to make predictions.
     * - Extra columns are columns that are neither feature nor target. They are ignored by models and can be used to
     *   provide additional context. An ID or name column is a common example.
     *
     * Feature columns are implicitly defined as all columns except the target and extra columns. If no extra columns
     * are specified, all columns except the target column are used as features.
     *
     * @param targetName The name of the target column.
     * @param extraNames Names of the columns that are neither features nor target. If null, no extra columns are used, i.e. all but
     * the target column are used as features.
     *
     * @example
     * pipeline example {
     *     val table = Table(
     *         {
     *             "extra": [1, 2, 3],
     *             "feature": [4, 5, 6],
     *             "target": [7, 8, 9],
     *         },
     *     );
     *     out table.toTabularDataset("target", extraNames="extra");
     * }
     */
    @Pure
    @PythonName("to_tabular_dataset")
    @Category(DataScienceCategory.UtilitiesQConversion)
    fun toTabularDataset(
        @PythonName("target_name") targetName: String,
        @PythonName("extra_names") extraNames: union<List<String>, String, Nothing?> = null
    ) -> dataset: TabularDataset
}

columnCount

The number of columns.

Note: This operation must compute the schema of the table, which can be expensive.

Type: Int

columnNames

The names of the columns in the table.

Note: This operation must compute the schema of the table, which can be expensive.

Type: List<String>

plot

The plotter for the table.

Call methods of the plotter to create various plots for the table.

Type: TablePlotter

rowCount

The number of rows.

Note: This operation must fully load the data into memory, which can be expensive.

Type: Int

schema

The schema of the table, which is a mapping from column names to their types.

Note: This operation must compute the schema of the table, which can be expensive.

Type: Schema

addColumns

Add columns to the table and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
columns union<Column<Any?>, List<Column<Any?>>, Table> The columns to add. -

Results:

Name Type Description
newTable Table The table with the additional columns.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3]});
    val newColumn = Column("b", [4, 5, 6]);
    out table.addColumns(newColumn);
}
Stub code in Table.sdsstub

@Pure
@PythonName("add_columns")
@Category(DataScienceCategory.DataProcessingQTable)
fun addColumns(
    columns: union<Column, List<Column>, Table>
) -> newTable: Table

addComputedColumn

Add a computed column to the table and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
name String The name of the new column. -
computer (row: Row) -> (cell: Cell<Any?>) The function that computes the values of the new column. -

Results:

Name Type Description
newTable Table The table with the computed column.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.addComputedColumn("c", (row) -> row["a"] + row["b"]);
}
Stub code in Table.sdsstub

@Pure
@PythonName("add_computed_column")
@Category(DataScienceCategory.DataProcessingQTable)
fun addComputedColumn(
    name: String,
    computer: (row: Row) -> cell: Cell
) -> newTable: Table

addIndexColumn

Add an index column to the table and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
name String The name of the new column. -
firstIndex Int The index to assign to the first row. Must be greater or equal to 0. 0

Results:

Name Type Description
newTable Table The table with the index column.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.addIndexColumn("id");
    out table.addIndexColumn("id", firstIndex = 10);
}
Stub code in Table.sdsstub

@Pure
@PythonName("add_index_column")
fun addIndexColumn(
    name: String,
    @PythonName("first_index") firstIndex: Int = 0
) -> newTable: Table

addTablesAsColumns

Add the columns of other tables and return the result as a new table.

Note: The original tables are not modified.

Parameters:

Name Type Description Default
others union<List<Table>, Table> The tables to add as columns. -

Results:

Name Type Description
newTable Table The table with the columns added.

Examples:

pipeline example {
    val table1 = Table({"a": [1, 2, 3]});
    val table2 = Table({"b": [4, 5, 6]});
    out table1.addTablesAsColumns(table2);
}
Stub code in Table.sdsstub

@Pure
@PythonName("add_tables_as_columns")
@Category(DataScienceCategory.DataProcessingQTable)
fun addTablesAsColumns(
    others: union<List<Table>, Table>
) -> newTable: Table

addTablesAsRows

Add the rows of other tables and return the result as a new table.

Note: The original tables are not modified.

Parameters:

Name Type Description Default
others union<List<Table>, Table> The tables to add as rows. -

Results:

Name Type Description
newTable Table The table with the rows added.

Examples:

pipeline example {
    val table1 = Table({"a": [1, 2, 3]});
    val table2 = Table({"a": [4, 5, 6]});
    out table1.addTablesAsRows(table2);
}
Stub code in Table.sdsstub

@Pure
@PythonName("add_tables_as_rows")
@Category(DataScienceCategory.DataProcessingQTable)
fun addTablesAsRows(
    others: union<List<Table>, Table>
) -> newTable: Table

countRowsIf

Count how many rows in the table satisfy the predicate.

The predicate can return one of three results:

  • true, if the row satisfies the predicate.
  • false, if the row does not satisfy the predicate.
  • null, if the truthiness of the predicate is unknown, e.g. due to missing values.

By default, cases where the truthiness of the predicate is unknown are ignored and this method returns how often the predicate returns true.

You can instead enable Kleene logic by setting ignoreUnknown = false. In this case, this method returns null if the predicate returns null at least once. Otherwise, it still returns how often the predicate returns true.

Parameters:

Name Type Description Default
predicate (row: Row) -> (satisfiesPredicate: Cell<Boolean?>) The predicate to apply to each row. -
ignoreUnknown Boolean Whether to ignore cases where the truthiness of the predicate is unknown. true

Results:

Name Type Description
count Int? The number of rows in the table that satisfy the predicate.

Examples:

pipeline example {
    val table = Table({"col1": [1, 2, 3], "col2": [1, 3, null]});
    out table.countRowsIf((row) -> row["col1"] < row["col2"]);
    out table.countRowsIf((row) -> row["col1"] < row["col2"], ignoreUnknown = false);
}
Stub code in Table.sdsstub

@Pure
@PythonName("count_rows_if")
fun countRowsIf(
    predicate: (row: Row) -> satisfiesPredicate: Cell<Boolean?>,
    @PythonName("ignore_unknown") ignoreUnknown: Boolean = true
) -> count: Int?

filterRows

Keep only rows that satisfy a condition and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
predicate (row: Row) -> (satisfiedPredicate: Cell<Boolean?>) The function that determines which rows to keep. -

Results:

Name Type Description
newTable Table The table containing only the specified rows.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.filterRows((row) -> row["a"] == 2);
}
Stub code in Table.sdsstub

@Pure
@PythonName("filter_rows")
fun filterRows(
    predicate: (row: Row) -> satisfiedPredicate: Cell<Boolean?>
) -> newTable: Table

filterRowsByColumn

Keep only rows that satisfy a condition on a specific column and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
name String The name of the column. -
predicate (cell: Cell<Any?>) -> (satisfiesPredicate: Cell<Boolean?>) The function that determines which rows to keep. -

Results:

Name Type Description
newTable Table The table containing only the specified rows.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.filterRowsByColumn("a", (cell) -> cell == 2);
}
Stub code in Table.sdsstub

@Pure
@PythonName("filter_rows_by_column")
fun filterRowsByColumn(
    name: String,
    predicate: (cell: Cell) -> satisfiesPredicate: Cell<Boolean?>
) -> newTable: Table

getColumn

Get a column from the table.

Parameters:

Name Type Description Default
name String The name of the column. -

Results:

Name Type Description
column Column<Any> The column.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.getColumn("a");
}
Stub code in Table.sdsstub

@Pure
@PythonName("get_column")
@Category(DataScienceCategory.UtilitiesQTable)
fun getColumn(
    name: String
) -> column: Column<Any>

getColumnType

Get the type of a column.

Parameters:

Name Type Description Default
name String The name of the column. -

Results:

Name Type Description
type ColumnType The type of the column.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.getColumnType("a");
}
Stub code in Table.sdsstub

@Pure
@PythonName("get_column_type")
@Category(DataScienceCategory.UtilitiesQTable)
fun getColumnType(
    name: String
) -> type: ColumnType

hasColumn

Check if the table has a column with a specific name.

Parameters:

Name Type Description Default
name String The name of the column. -

Results:

Name Type Description
hasColumn Boolean Whether the table has a column with the specified name.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.hasColumn("a");
    out table.hasColumn("c");
}
Stub code in Table.sdsstub

@Pure
@PythonName("has_column")
@Category(DataScienceCategory.UtilitiesQTable)
fun hasColumn(
    name: String
) -> hasColumn: Boolean

inverseTransformTable

Inverse-transform the table by a fitted, invertible transformer and return the result as a new table.

Notes:

  • The original table is not modified.
  • Depending on the transformer, this operation might fully load the data into memory, which can be expensive.

Parameters:

Name Type Description Default
fittedTransformer InvertibleTableTransformer The fitted, invertible transformer to apply. -

Results:

Name Type Description
newTable Table The inverse-transformed table.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3]});
    val transformer, val transformedTable = RangeScaler(min = 0, max = 1).fitAndTransform(table);
    out transformedTable.inverseTransformTable(transformer);
}
Stub code in Table.sdsstub

@Pure
@PythonName("inverse_transform_table")
@Category(DataScienceCategory.DataProcessingQTable)
fun inverseTransformTable(
    @PythonName("fitted_transformer") fittedTransformer: InvertibleTableTransformer
) -> newTable: Table

join

Join the current table (left table) with another table (right table) and return the result as a new table.

Rows are matched if the values in the specified columns are equal. The parameter left_names controls which columns are used for the left table, and right_names does the same for the right table.

There are various types of joins, specified by the mode parameter:

  • "inner": Keep only rows that have matching values in both tables.
  • "left": Keep all rows from the left table and the matching rows from the right table. Cells with no match are marked as missing values.
  • "right": Keep all rows from the right table and the matching rows from the left table. Cells with no match are marked as missing values.
  • "full": Keep all rows from both tables. Cells with no match are marked as missing values.

Note: The original tables are not modified.

Parameters:

Name Type Description Default
rightTable Table The table to join with the left table. -
leftNames union<List<String>, String> Names of columns to join on in the left table. -
rightNames union<List<String>, String> Names of columns to join on in the right table. -
mode literal<"inner", "left", "right", "full"> Specify which type of join you want to use. "inner"

Results:

Name Type Description
newTable Table The table with the joined table.

Examples:

pipeline example {
    val table1 = Table({"a": [1, 2], "b": [true, false]});
    val table2 = Table({"c": [1, 3], "d": ["a", "b"]});
    out table1.join(table2, "a", "c", mode="inner");
    out table1.join(table2, "a", "c", mode="left");
    out table1.join(table2, "a", "c", mode="right");
    out table1.join(table2, "a", "c", mode="full");
}
Stub code in Table.sdsstub

@Pure
@Category(DataScienceCategory.DataProcessingQTable)
fun join(
    @PythonName("right_table") rightTable: Table,
    @PythonName("left_names") leftNames: union<List<String>, String>,
    @PythonName("right_names") rightNames: union<List<String>, String>,
    mode: literal<"inner", "left", "right", "full"> = "inner"
) -> newTable: Table

removeColumns

Remove the specified columns from the table and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
selector union<List<String>, String> The columns to remove. -
ignoreUnknownNames Boolean If set to true, columns that are not present in the table will be ignored. If set to false, an error will be raised if any of the specified columns do not exist. false

Results:

Name Type Description
newTable Table The table with the columns removed.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.removeColumns("a");
    out table.removeColumns(["c"], ignoreUnknownNames = true);
}
Stub code in Table.sdsstub

@Pure
@PythonName("remove_columns")
@Category(DataScienceCategory.DataProcessingQTable)
fun removeColumns(
    selector: union<List<String>, String>,
    @PythonName("ignore_unknown_names") ignoreUnknownNames: Boolean = false
) -> newTable: Table

removeColumnsWithMissingValues

Remove columns with too many missing values and return the result as a new table.

How many missing values are allowed is determined by the missing_value_ratio_threshold parameter. A column is removed if its missing value ratio is greater than the threshold. By default, a column is removed if it contains any missing values.

Notes:

  • The original table is not modified.
  • This operation must fully load the data into memory, which can be expensive.

Results:

Name Type Description
newTable Table The table without columns that contain too many missing values.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, null]});
    out table.removeColumnsWithMissingValues();
}
Stub code in Table.sdsstub

@Pure
@PythonName("remove_columns_with_missing_values")
@Category(DataScienceCategory.DataProcessingQTable)
fun removeColumnsWithMissingValues() -> newTable: Table

removeDuplicateRows

Remove duplicate rows and return the result as a new table.

Note: The original table is not modified.

Results:

Name Type Description
newTable Table The table without duplicate rows.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 2], "b": [4, 5, 5]});
    out table.removeDuplicateRows();
}
Stub code in Table.sdsstub

@Pure
@PythonName("remove_duplicate_rows")
@Category(DataScienceCategory.DataProcessingQTable)
fun removeDuplicateRows() -> newTable: Table

removeNonNumericColumns

Remove non-numeric columns and return the result as a new table.

Note: The original table is not modified.

Results:

Name Type Description
newTable Table The table without non-numeric columns.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": ["4", "5", "6"]});
    out table.removeNonNumericColumns();
}
Stub code in Table.sdsstub

@Pure
@PythonName("remove_non_numeric_columns")
@Category(DataScienceCategory.DataProcessingQTable)
fun removeNonNumericColumns() -> newTable: Table

removeRows

Remove rows that satisfy a condition and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
predicate (row: Row) -> (satisfiesPredicate: Cell<Boolean?>) The function that determines which rows to remove. -

Results:

Name Type Description
newTable Table The table without the specified rows.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.removeRows((row) -> row["a"] == 2);
}
Stub code in Table.sdsstub

@Pure
@PythonName("remove_rows")
@Category(DataScienceCategory.DataProcessingQTable)
fun removeRows(
    predicate: (row: Row) -> satisfiesPredicate: Cell<Boolean?>
) -> newTable: Table

removeRowsByColumn

Remove rows that satisfy a condition on a specific column and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
name String The name of the column. -
predicate (cell: Cell<Any>) -> (satisfiesPredicate: Cell<Boolean?>) The function that determines which rows to remove. -

Results:

Name Type Description
newTable Table The table without the specified rows.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.removeRowsByColumn("a", (cell) -> cell == 2);
}
Stub code in Table.sdsstub

@Pure
@PythonName("remove_rows_by_column")
@Category(DataScienceCategory.DataProcessingQTable)
fun removeRowsByColumn(
    name: String,
    predicate: (cell: Cell<Any>) -> satisfiesPredicate: Cell<Boolean?>
) -> newTable: Table

removeRowsWithMissingValues

Remove rows that contain missing values in the specified columns and return the result as a new table.

The resulting table no longer has missing values in the specified columns. Be aware that this method can discard a lot of data. Consider first removing columns with many missing values, or using one of the imputation methods (see "Related" section).

Note: The original table is not modified.

Parameters:

Name Type Description Default
selector union<List<String>, String?> The columns to check. If null, all columns are checked. null

Results:

Name Type Description
newTable Table The table without rows that contain missing values in the specified columns.

Examples:

pipeline example {
    val table = Table({"a": [1, null, 3], "b": [4, 5, null]});
    out table.removeRowsWithMissingValues();
    out table.removeRowsWithMissingValues(selector = ["b"]);
}
Stub code in Table.sdsstub

@Pure
@PythonName("remove_rows_with_missing_values")
@Category(DataScienceCategory.DataProcessingQTable)
fun removeRowsWithMissingValues(
    selector: union<List<String>, String, Nothing?> = null
) -> newTable: Table

removeRowsWithOutliers

Remove rows that contain outliers in the specified columns and return the result as a new table.

Whether a value is an outlier in a column is determined by its z-score. The z-score the distance of the value from the mean of the column divided by the standard deviation of the column. If the z-score is greater than the given threshold, the value is considered an outlier. Missing values are ignored during the calculation of the z-score.

The z-score is only defined for numeric columns. Non-numeric columns are ignored, even if they are specified in column_names.

Notes:

  • The original table is not modified.
  • This operation must fully load the data into memory, which can be expensive.

Parameters:

Name Type Description Default
selector union<List<String>, String?> The columns to check. If null, all columns are checked. null
zScoreThreshold Float The z-score threshold for detecting outliers. Must be greater than or equal to 0. 3

Results:

Name Type Description
newTable Table The table without rows that contain outliers in the specified columns.

Examples:

pipeline example {
    val table = Table(
        {
            "a": [1, 2, 3, 4, 5, 6, 1000, null],
            "b": [1, 2, 3, 4, 5, 6,    7,    8],
        }
    );
    out table.removeRowsWithOutliers(zScoreThreshold = 2);
}
Stub code in Table.sdsstub

@Pure
@PythonName("remove_rows_with_outliers")
@Category(DataScienceCategory.DataProcessingQTable)
fun removeRowsWithOutliers(
    selector: union<List<String>, String, Nothing?> = null,
    @PythonName("z_score_threshold") zScoreThreshold: Float = 3
) -> newTable: Table

renameColumn

Rename a column and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
oldName String The name of the column to rename. -
newName String The new name of the column. -

Results:

Name Type Description
newTable Table The table with the column renamed.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.renameColumn("a", "c");
}
Stub code in Table.sdsstub

@Pure
@PythonName("rename_column")
@Category(DataScienceCategory.DataProcessingQTable)
fun renameColumn(
    @PythonName("old_name") oldName: String,
    @PythonName("new_name") newName: String
) -> newTable: Table

replaceColumn

Replace a column with zero or more columns and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
oldName String The name of the column to replace. -
newColumns union<Column<Any>, List<Column<Any>>, Table> The new columns. -

Results:

Name Type Description
newTable Table The table with the column replaced.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    val column1 = Column("c", [7, 8, 9]);
    val column2 = Column("d", [10, 11, 12]);
    out table.replaceColumn("a", []);
    out table.replaceColumn("a", column1);
    out table.replaceColumn("a", [column1, column2]);
}
Stub code in Table.sdsstub

@Pure
@PythonName("replace_column")
@Category(DataScienceCategory.DataProcessingQTable)
fun replaceColumn(
    @PythonName("old_name") oldName: String,
    @PythonName("new_columns") newColumns: union<Column<Any>, List<Column<Any>>, Table>
) -> newTable: Table

selectColumns

Select a subset of the columns and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
selector union<List<String>, String> The columns to keep. -

Results:

Name Type Description
newTable Table The table with only a subset of the columns.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.selectColumns("a");
}
Stub code in Table.sdsstub

@Pure
@PythonName("select_columns")
fun selectColumns(
    selector: union<List<String>, String>
) -> newTable: Table

shuffleRows

Shuffle the rows and return the result as a new table.

Notes:

  • The original table is not modified.
  • This operation must fully load the data into memory, which can be expensive.

Parameters:

Name Type Description Default
randomSeed Int The seed for the pseudorandom number generator. 0

Results:

Name Type Description
newTable Table The table with the rows shuffled.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.shuffleRows();
}
Stub code in Table.sdsstub

@Pure
@PythonName("shuffle_rows")
@Category(DataScienceCategory.DataProcessingQTable)
fun shuffleRows(
    @PythonName("random_seed") randomSeed: Int = 0
) -> newTable: Table

sliceRows

Slice the rows and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
start Int The start index of the slice. Nonnegative indices are counted from the beginning (starting at 0), negative indices from the end (starting at -1). 0
length Int? The length of the slice. If null, the slice contains all rows starting from start. Must greater than or equal to 0. null

Results:

Name Type Description
newTable Table The table with the slice of rows.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.sliceRows(start = 1);
    out table.sliceRows(start = 1, length = 1);
}
Stub code in Table.sdsstub

@Pure
@PythonName("slice_rows")
@Category(DataScienceCategory.DataProcessingQTable)
fun sliceRows(
    start: Int = 0,
    length: Int? = null
) -> newTable: Table

sortRows

Sort the rows by a custom function and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
keySelector (row: Row) -> (key: Cell<Any?>) The function that selects the key to sort by. -
descending Boolean Whether to sort in descending order. false

Results:

Name Type Description
newTable Table The table with the rows sorted.

Examples:

pipeline example {
    val table = Table({"a": [2, 1, 3], "b": [1, 1, 2]});
    out table.sortRows((row) -> row["a"] - row["b"]);
}
Stub code in Table.sdsstub

@Pure
@PythonName("sort_rows")
@Category(DataScienceCategory.DataProcessingQTable)
fun sortRows(
    @PythonName("key_selector") keySelector: (row: Row) -> key: Cell,
    descending: Boolean = false
) -> newTable: Table

sortRowsByColumn

Sort the rows by a specific column and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
name String The name of the column to sort by. -
descending Boolean Whether to sort in descending order. false

Results:

Name Type Description
newTable Table The table with the rows sorted by the specified column.

Examples:

pipeline example {
    val table = Table({"a": [2, 1, 3], "b": [1, 1, 2]});
    out table.sortRowsByColumn("a");
}
Stub code in Table.sdsstub

@Pure
@PythonName("sort_rows_by_column")
@Category(DataScienceCategory.DataProcessingQTable)
fun sortRowsByColumn(
    name: String,
    descending: Boolean = false
) -> newTable: Table

splitRows

Create two tables by splitting the rows of the current table.

The first table contains a percentage of the rows specified by percentage_in_first, and the second table contains the remaining rows. By default, the rows are shuffled before splitting. You can disable this by setting shuffle to false.

Notes:

  • The original table is not modified.
  • This operation must fully load the data into memory, which can be expensive.

Parameters:

Name Type Description Default
percentageInFirst Float The percentage of rows to include in the first table. Must be between 0 and 1. -
shuffle Boolean Whether to shuffle the rows before splitting. true
randomSeed Int The seed for the pseudorandom number generator used for shuffling. 0

Results:

Name Type Description
firstTable Table The first table.
secondTable Table The second table.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3, 4, 5], "b": [6, 7, 8, 9, 10]});
    out table.splitRows(0.6);
}
Stub code in Table.sdsstub

@Pure
@PythonName("split_rows")
@Category(DataScienceCategory.DataProcessingQTable)
fun splitRows(
    @PythonName("percentage_in_first") percentageInFirst: Float,
    shuffle: Boolean = true,
    @PythonName("random_seed") randomSeed: Int = 0
) -> (firstTable: Table, secondTable: Table)

summarizeStatistics

Return a table with important statistics about this table.

API Stability

Do not rely on the exact output of this method. In future versions, we may change the displayed statistics without prior notice.

Results:

Name Type Description
statistics Table The table with statistics.

Examples:

pipeline example {
    val table = Table({"a": [1, 3]});
    out table.summarizeStatistics();
}
Stub code in Table.sdsstub

@Pure
@PythonName("summarize_statistics")
@Category(DataScienceCategory.DataExplorationQMetric)
fun summarizeStatistics() -> statistics: Table

toColumns

Return the data of the table as a list of columns.

Results:

Name Type Description
columns List<Column<Any?>> The columns of the table.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.toColumns();
}
Stub code in Table.sdsstub

@Pure
@PythonName("to_columns")
@Category(DataScienceCategory.UtilitiesQConversion)
fun toColumns() -> columns: List<Column>

toCsvFile

Write the table to a CSV file.

If the file and/or the parent directories do not exist, they will be created. If the file exists already, it will be overwritten.

Parameters:

Name Type Description Default
path String The path to the CSV file. If the file extension is omitted, it is assumed to be ".csv". -

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    table.toCsvFile("./src/resources/toCsvFile.csv");
}
Stub code in Table.sdsstub

@Impure([ImpurityReason.FileWriteToParameterizedPath("path")])
@PythonName("to_csv_file")
@Category(DataScienceCategory.DataExport)
fun toCsvFile(
    path: String
)

toJsonFile

Write the table to a JSON file.

If the file and/or the parent directories do not exist, they will be created. If the file exists already, it will be overwritten.

Note: This operation must fully load the data into memory, which can be expensive.

Parameters:

Name Type Description Default
path String The path to the JSON file. If the file extension is omitted, it is assumed to be ".json". -

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    table.toJsonFile("./src/resources/toJsonFile.json");
}
Stub code in Table.sdsstub

@Impure([ImpurityReason.FileWriteToParameterizedPath("path")])
@PythonName("to_json_file")
@Category(DataScienceCategory.DataExport)
fun toJsonFile(
    path: String
)

toMap

Return a map from column names to column values.

Note: This operation must fully load the data into memory, which can be expensive.

Results:

Name Type Description
map Map<String, List<Any>> The map representation of the table.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.toMap();
}
Stub code in Table.sdsstub

@Pure
@PythonName("to_dict")
@Category(DataScienceCategory.UtilitiesQConversion)
fun toMap() -> map: Map<String, List<Any>>

toParquetFile

Write the table to a Parquet file.

If the file and/or the parent directories do not exist, they will be created. If the file exists already, it will be overwritten.

Parameters:

Name Type Description Default
path String The path to the Parquet file. If the file extension is omitted, it is assumed to be ".parquet". -

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    table.toParquetFile("./src/resources/toParquetFile.parquet");
}
Stub code in Table.sdsstub

@Impure([ImpurityReason.FileWriteToParameterizedPath("path")])
@PythonName("to_parquet_file")
@Category(DataScienceCategory.DataExport)
fun toParquetFile(
    path: String
)

toTabularDataset

Return a new TabularDataset with columns marked as a target, feature, or extra.

  • The target column is the column that a model should predict.
  • Feature columns are columns that a model should use to make predictions.
  • Extra columns are columns that are neither feature nor target. They are ignored by models and can be used to provide additional context. An ID or name column is a common example.

Feature columns are implicitly defined as all columns except the target and extra columns. If no extra columns are specified, all columns except the target column are used as features.

Parameters:

Name Type Description Default
targetName String The name of the target column. -
extraNames union<List<String>, String?> Names of the columns that are neither features nor target. If null, no extra columns are used, i.e. all but the target column are used as features. null

Results:

Name Type Description
dataset TabularDataset -

Examples:

pipeline example {
    val table = Table(
        {
            "extra": [1, 2, 3],
            "feature": [4, 5, 6],
            "target": [7, 8, 9],
        },
    );
    out table.toTabularDataset("target", extraNames="extra");
}
Stub code in Table.sdsstub

@Pure
@PythonName("to_tabular_dataset")
@Category(DataScienceCategory.UtilitiesQConversion)
fun toTabularDataset(
    @PythonName("target_name") targetName: String,
    @PythonName("extra_names") extraNames: union<List<String>, String, Nothing?> = null
) -> dataset: TabularDataset

transformColumns

Transform columns with a custom function and return the result as a new table.

Note: The original table is not modified.

Parameters:

Name Type Description Default
selector union<List<String>, String> The names of the columns to transform. -
transformer (cell: Cell<Any?>, row: Row) -> (result: Cell<Any?>) The function that computes the new values. It may take either a single cell or a cell and the entire row as arguments (see examples). -

Results:

Name Type Description
newTable Table The table with the transformed column.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3], "b": [4, 5, 6]});
    out table.transformColumns("a", (cell, row) -> cell + 1);
    out table.transformColumns(["a", "b"], (cell, row) -> cell + 1);
    out table.transformColumns("a", (cell, row) -> cell + row["b"]);
}
Stub code in Table.sdsstub

@Pure
@PythonName("transform_columns")
@Category(DataScienceCategory.DataProcessingQTable)
fun transformColumns(
    selector: union<List<String>, String>,
    transformer: (cell: Cell, row: Row) -> result: Cell
) -> newTable: Table

transformTable

Transform the table with a fitted transformer and return the result as a new table.

Notes:

  • The original table is not modified.
  • Depending on the transformer, this operation might fully load the data into memory, which can be expensive.

Parameters:

Name Type Description Default
fittedTransformer TableTransformer The fitted transformer to apply. -

Results:

Name Type Description
newTable Table The transformed table.

Examples:

pipeline example {
    val table = Table({"a": [1, 2, 3]});
    val transformer = RangeScaler(min = 0, max = 1).fit(table);
    out table.transformTable(transformer);
}
Stub code in Table.sdsstub

@Pure
@PythonName("transform_table")
@Category(DataScienceCategory.DataProcessingQTable)
fun transformTable(
    @PythonName("fitted_transformer") fittedTransformer: TableTransformer
) -> newTable: Table

fromColumns

Create a table from columns.

Parameters:

Name Type Description Default
columns union<Column<Any?>, List<Column<Any?>>> The columns. -

Results:

Name Type Description
table Table The created table.

Examples:

pipeline example {
    val a = Column("a", [1, 2, 3]);
    val b = Column("b", [4, 5, 6]);
    out Table.fromColumns([a, b]);
}
Stub code in Table.sdsstub

@Pure
@PythonName("from_columns")
@Category(DataScienceCategory.UtilitiesQConversion)
static fun fromColumns(
    columns: union<Column, List<Column>>
) -> table: Table

fromCsvFile

Create a table from a CSV file.

Parameters:

Name Type Description Default
path String The path to the CSV file. If the file extension is omitted, it is assumed to be ".csv". -
separator String The separator between the values in the CSV file. ","

Results:

Name Type Description
table Table The created table.

Examples:

pipeline example {
    out Table.fromCsvFile("./src/resources/fromCsvFile.csv");
}
Stub code in Table.sdsstub

@Impure([ImpurityReason.FileReadFromParameterizedPath("path")])
@PythonName("from_csv_file")
@Category(DataScienceCategory.DataImport)
static fun fromCsvFile(
    path: String,
    separator: String = ","
) -> table: Table

fromJsonFile

Create a table from a JSON file.

Parameters:

Name Type Description Default
path String The path to the JSON file. If the file extension is omitted, it is assumed to be ".json". -

Results:

Name Type Description
table Table The created table.

Examples:

pipeline example {
    out Table.fromJsonFile("./src/resources/fromJsonFile.json");
}
Stub code in Table.sdsstub

@Impure([ImpurityReason.FileReadFromParameterizedPath("path")])
@PythonName("from_json_file")
@Category(DataScienceCategory.DataImport)
static fun fromJsonFile(
    path: String
) -> table: Table

fromMap

Create a table from a map that maps column names to column values.

Parameters:

Name Type Description Default
data Map<String, List<Any>> The data. -

Results:

Name Type Description
table Table The generated table.

Examples:

pipeline example {
    val data = {"a": [1, 2, 3], "b": [4, 5, 6]};
    out Table.fromMap(data);
}
Stub code in Table.sdsstub

@Pure
@PythonName("from_dict")
@Category(DataScienceCategory.DataImport)
static fun fromMap(
    data: Map<String, List<Any>>
) -> table: Table

fromParquetFile

Create a table from a Parquet file.

Parameters:

Name Type Description Default
path String The path to the Parquet file. If the file extension is omitted, it is assumed to be ".parquet". -

Results:

Name Type Description
table Table The created table.

Examples:

pipeline example {
    out Table.fromParquetFile("./src/resources/fromParquetFile.parquet");
}
Stub code in Table.sdsstub

@Impure([ImpurityReason.FileReadFromParameterizedPath("path")])
@PythonName("from_parquet_file")
@Category(DataScienceCategory.DataImport)
static fun fromParquetFile(
    path: String
) -> table: Table